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Decoding the hallmarks of allograft 
dysfunction with a comprehensive 
pan-organ transcriptomic atlas

Harry Robertson    1,2,3,4, Hani Jieun Kim2,5,6,7, Jennifer Li3,8, 
Nicholas Robertson1,2,4,9, Paul Robertson8, Elvira Jimenez-Vera3, 
Farhan Ameen1,2,4, Andy Tran1,2,4, Katie Trinh3, Philip J. O’Connell3,8,10, 
Jean Y. H. Yang    1,2,4,9,12, Natasha M. Rogers3,8,10,12 & Ellis Patrick    1,2,3,4,9,11,12

The pathogenesis of allograft (dys)function has been increasingly studied 
using ‘omics’-based technologies, but the focus on individual organs has 
created knowledge gaps that neither unify nor distinguish pathological 
mechanisms across allografts. Here we present a comprehensive study of 
human pan-organ allograft dysfunction, analyzing 150 datasets with more 
than 12,000 samples across four commonly transplanted solid organs (heart, 
lung, liver and kidney, n = 1,160, 1,241, 1,216 and 8,853 samples, respectively) 
that we leveraged to explore transcriptomic differences among allograft 
dysfunction (delayed graft function, acute rejection and fibrosis), tolerance 
and stable graft function. We identified genes that correlated robustly with 
allograft dysfunction across heart, lung, liver and kidney transplantation. 
Furthermore, we developed a transfer learning omics prediction framework 
that, by borrowing information across organs, demonstrated superior 
classifications compared to models trained on single organs. These 
findings were validated using a single-center prospective kidney transplant 
cohort study (a collective 329 samples across two timepoints), providing 
insights supporting the potential clinical utility of our approach. Our study 
establishes the capacity for machine learning models to learn across organs 
and presents a transcriptomic transplant resource that can be employed to 
develop pan-organ biomarkers of allograft dysfunction.

Organ transplantation is a crucial therapeutic option for individu-
als with end-stage organ failure, providing a mortality benefit and 
improved quality of life1–3. Long-term graft survival varies among organs 
(82% for kidney transplants4, 80% for liver5, 59% for lung6 and 72.5% for 
heart7), but longevity is universally limited by allograft dysfunction, a 
term that encompasses a broad range of pathologies. Dysfunction can 
be driven by ischemia reperfusion injury manifesting as delayed graft 
function (DGF) (or primary non-function)8,9, activation of the adaptive 
immune response, which initiates rejection and tissue destruction10,11, 

or maladaptive repair responding to injury cues that replaces function-
ing parenchyma with extracellular matrix and culminates in fibro-
sis12,13. Molecular hallmarks of allograft dysfunction have already been 
established from organ-specific human studies14–17, particularly kidney 
transplantation, which is the most frequently performed transplant 
surgery worldwide18.

Numerous technological advances have supported rapid evolution 
of in silico research, revolutionizing understanding of allograft pathol-
ogy at a molecular level, with the promise to transform our approach 
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easy to diagnose histologically due to inherent risks of tissue sampling
and consensus-driven histopathological scoring systems that remain
observer dependent. To detect pan-organ mechanisms of acute rejec-
tion, we used our atlas to identify consistently differentially expressed
genes in allografts with biopsy-proven rejection. We identified 54 data-
sets encompassing 40 kidney, five lung, five liver and four heart studies,
each comparing stable with acutely rejecting grafts. To avoid potential 
loss of biologically relevant variation unique to each study, we chose 
not to employ batch correction methods when combining data and, 
instead, employed a P value combination method to reduce the impact P
of technical artifacts between datasets28,29. We identified genes associ-
ated with acute rejection unique to each organ as well as a common set 
of 158 genes that were differentially expressed across all four organs,
which was nearly 20 times higher than the eight genes expected by
chance (P = 5.44 × 10P −8; Fig. 2a). Genes encoding chemokines (CXCL9, 
CXCL10 and CXCL11), granzymes (GZMA and GZMB) and cell surface
receptors (CD2, CD8A and CD53) were associated with rejection in
kidney, heart, liver and lung transplants (Fig. 2b), demonstrating a
unifying pan-organ molecular marker.

To identify the cellular origin of this pan-organ molecular signal, 
we used six single-cell RNA-seq datasets across multiple solid organ
transplants comparing acutely rejecting and stable allografts. The
Cepo framework was used to generate cell type importance statistics 
for each gene in each of the 36 recognzed cell types defined in our
atlas (Extended Data Fig. 2). Using Cepo statistics and our set of 158 
pan-organ rejection genes, we demonstrated differential enrichment 
in myeloid cell subsets from biopsies with acute rejection (Fig. 2c and
Supplementary Fig. 1). We then aligned cells from our PROMAD atlas

to healthcare. The complex data encapsulated by high-resolution
multi-omics approaches provide a global assessment of tissue micro-
environments, capable of dismantling the interaction between host
and recipient, and the ensuing alloimmune response19. Precise defini-
tions of cell type and functional state facilitates analysis of more subtle 
allograft (patho)physiology compared to the limited interpretation
arising from clinical and histological parameters. Despite a plethora of 
genomic knowledge and identification of potential biomarkers13,20–23,
there is limited consensus among organs and restrained incorpora-
tion of these data into routine clinical practice to supersede current
(non-molecular) diagnostic standards for monitoring allograft func-
tion and modifying treatment. This has unacceptable implications for
transplant recipients in which their survival and/or that of the graft has 
not advanced substantially in the past two decades.

A critical challenge in the field lies in the assumption that trans-
planted organs exhibit inherent molecular heterogeneity in response
to cellular injury, rejection and repair. Studies previously demon-
strated that markers predictive of dysfunction in one transplant organ 
cohort fail to show concordance when applied to other allografts24,25.
Analytical accuracy is further complicated by the use of different tech-
nologies to generate transcriptomic signatures26. To partly address
these obstacles, an expansive, manually generated meta-analysis
from pre-clinical and human transplant studies was performed to 
create the Banff Human Organ Transplant (BHOT), a gene array that 
reflects global allograft dysfunction27. However, the current lack of a
definitive quantitative capacity to compare molecular associations
across transplant datasets significantly hampers our ability to acquire
a comprehensive understanding of clinical pathologies across all
transplanted organs.

Here we introduce the concept of ‘pan-organ allograft dysfunc-
tion’, positing that pathophysiological genomic signatures are agnostic 
of organ type. To support this notion, we curated publicly available
transcriptomic datasets across the four most common solid organs 
transplanted in humans, profiling three main forms of organ dys-
function (DGF, acute rejection and fibrosis), in addition to transplant
tolerance, with the aim of identifying a cohort of conserved genes for 
each phenotype. Furthermore, we developed, implemented, evalu-
ated and validated a novel transfer learning framework that leverages
information across different organ transplants to develop a superior
transcriptomic signature. We provide this comprehensive curated
dataset as a publicly available resource. Combined, these resources pro-
vide an insight into the pan-organ hallmarks of allograft dysfunction.

Results
Pan-organ ResOurce for Molecular Allograft Dysfunction 
(PROMAD)
We postulated that the pre-existing transcriptomic datasets from 
human samples, across multiple transplanted organs (kidney, heart,
liver and lung), displaying varied clinical pathologies (DGF, acute rejec-
tion, fibrosis and tolerance) would facilitate generation of a compre-
hensive gene expression atlas of allograft dysfunction. We curated 
available datasets incorporating microarray, bulk tissue RNA sequenc-
ing (RNA-seq) and single-cell RNA-seq technologies (Extended Data
Fig. 1). Our large-scale atlas comprises 150 datasets and 12,970 samples 
(Fig. 1 and Supplementary Table 1). This resource is publicly available 
via https://shiny.maths.usyd.edu.au/PROMAD/. We leveraged this atlas
to identify pan-organ molecular signatures that correlate with clini-
cally defined allograft pathologies and evaluated their effectiveness 
as organ-agnostic predictors of (dys)function.

Shared molecular markers in allograft rejection
A reductionist understanding of acute rejection is that of an orches-
trated adaptive immune response to the allograft, but this fails to
reflect the complexity of interactions between infiltrating recipient
immune cells and the donor parenchyma. Rejection is not necessarily 
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Fig. 1 | The PROMAD atlas: a comprehensive map of allograft dysfunction.
The PROMAD atlas encapsulates an extensive array of data, presenting a 
multifaceted view of allograft dysfunction through whole blood samples,
PBMCs and allograft biopsies. It comprises data from heart, lung, liver and 
kidney transplants, encompassing four transplant outcomes, namely DGF,
rejection, fibrosis and tolerance. The collection and curation process resulted
in a repository of 150 datasets consisting of 12,765 molecular samples derived
from more than 20 countries worldwide. We performed analysis on PROMAD, 
identifying common molecular and cellular signatures of dysfunction 
across organs and using our novel transfer learning framework to assess the
effectiveness of organ-agnostic predictions of allograft dysfunction. This figure
was created with BioRender.
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to a common low-dimensional embedding (Fig. 2d and Supplementary 
Fig. 2) where we confirmed that the pan-organ acute rejection gene 
signature was highly expressed in myeloid cells (Fig. 2e,f).

Liquid biopsy molecular markers in allograft rejection
Minimally invasive liquid biopsy tests provide a substantial advan-
tage for monitoring allograft health, but commercially available 
markers have limited sensitivity and specificity to facilitate clinical 
decision-making. Within PROMAD, we analyzed 23 datasets of whole 
blood samples, comprising two liver, three heart and 18 kidney trans-
plants with a diagnosis of acute rejection, and we compared molecular 
changes to patients with stable allograft function (Supplementary 
Table 1) using the same approach as for tissue samples. Due to the het-
erogeneity of rejection phenotype classifications in datasets, across 
organs and over time, we deliberately classified a broad, organ-agnostic 
signature for rejection. We identified 77 genes that were consistently 
associated with an acute rejection phenotype in liquid biopsies across 
all organs (Extended Data Fig. 3), which was more than expected by 
chance (when using a combined P value threshold of P < 1 × 10−5), and 
genes were predominantly involved in inflammation (CASP1, CASP4 and 
IRF4) and regulation of immune function (CD28, CD36 and FCER1G) 
(Extended Data Fig. 3). We subsequently mapped these 77 genes onto a 
curated set of single-cell RNA-seq datasets derived from liquid biopsy 
samples within our atlas, demonstrating overexpression in CD14+ 
monocytes (Supplementary Fig. 2), in keeping with the findings in 
biopsy samples.

Transfer learning identifies a pan-organ rejection model
We developed a Transferable Omics Prediction (TOP) framework to 
assess the reliability of predictive markers of acute rejection derived 
from liquid biopsies. Classification models that are constructed using 
reference-free methods, as opposed to traditional batch correction, 
have been shown to be robust to technical and biological variabil-
ity30–32 and, thus, transferable across cohorts, biological tissues and 
sequencing assays26. Traditional batch correction methods that rely 
on common matrix factorization methods are not suited to building 
models with confounding factors (Supplementary Methods). TOP 
relies on a key feature engineering step that we previously showed to 
be self-normalizing26. Creation of a log-ratio matrix of the most dif-
ferentially expressed genes across all datasets and leveraging these 
relative changes in gene expression enhance the model’s robustness. 
As the utility of TOP extends beyond PROMAD, we made the framework 
available on the Bioconductor Project33.

To evaluate the impact of cross-organ learning, the TOP framework 
was applied to predict allograft rejection across 23 liquid biopsy data-
sets. Although we identified molecular mechanisms of acute rejection 
that are consistent across organs, it is not clear whether these markers 
are superior to those derived from organ-specific data. To compare 

their predictive performance, a pan-organ model was recursively 
built on 22 datasets using TOP, with one dataset being left for model 
evaluation. Organ-specific models were also constructed using the 
TOP framework and evaluated with the same leave-one-dataset-out 
strategy. Our findings revealed enhanced model performance for 
models trained on all available organs compared to solely the organs 
being predicted (Fig. 2g), illustrating the robustness of a pan-organ 
molecular signal. In conventional, organ-specific models, the mean 
area under the receiver operating characteristic curve (AUC) for heart, 
kidney and liver predictions was 0.55, 0.70 and 0.55, respectively. In 
contrast, the pan-organ model demonstrated improved performance 
(mean AUC of 0.63, 0.74 and 0.71 for heart, kidney and liver datasets, 
respectively). Furthermore, by varying the number of features included 
in the models, only 50 gene ratios were required to construct effective 
models (Extended Data Fig. 4). These results demonstrate the potential 
of cross-organ learning as a valuable approach to improved accuracy 
and applicability of models predicting allograft rejection.

To determine the impact of dominance of kidney allograft data 
in PROMAD on a pan-organ biomarker, we performed a compara-
tive analysis of weighting schemes. We employed multiple weighting 
strategies to ensure equal contribution from the training sets of each 
organ (Extended Data Fig. 5). The benefits of equal organ weighting 
became evident when contrasted against a naive integration strategy, 
which resulted in a kidney-dominant model due to the distribution of 
the training set. Notably, performance in kidney datasets was supe-
rior when other organs were weighted (Extended Data Fig. 4), further 
showcasing the advantages of adopting an organ-agnostic diagnostic 
approach over organ-specific models.

The benefits of a reference-free data integration method, such as 
the TOP framework, became apparent when considering data integra-
tion across platforms (microarray and RNA-seq). To demonstrate how 
TOP allows for integration across platforms, we compared other inte-
gration methods with our TOP-based approach. We demonstrate that 
TOP, with its ratio-based normalization, facilitated cross-technological 
application more adeptly than naive normalization and batch correc-
tion methods (Extended Data Fig. 4).

Validation of a pan-organ liquid biopsy for allograft rejection
Current biomarkers in organ transplantation are limited in their ability 
to inform clinical decision-making34; however, high-throughput assays 
offer a potential method for biomarker identification. We validated our 
pan-organ findings using the Australian Chronic Allograft Dysfunction 
(AUSCAD) study, a prospective, single-center study of kidney and kid-
ney–pancreas transplant recipients. This cohort contains clinical and 
histopathological data as well as paired 3-month protocol biopsies and 
blood collected and sequenced from n = 70 patients.

We compared the performance of three models in predicting 
acute rejection in AUSCAD: a logistic regression model built on 

Fig. 2 | Identification of a pan-organ rejection signal across solid organ 
transplantation. a, Venn diagram showing the overlap and uniqueness 
of differentially expressed genes between biopsy samples from allografts 
experiencing acute rejection and otherwise stably functioning grafts. The 
number of overlapping genes (and number of genes expected by chance).  
b, Heatmap of the top 50 rejection-specific genes, with each column representing 
a dataset and each row a gene. c, Box plot of Cepo enrichment scores of genes 
from b in cell types from acute rejection and stably functioning grafts (n = 6 and 
n = 16 biologically independent control and allograft rejection (AR) samples  
were used, respectively). d, t-SNE plot of merged single-cell RNA-seq datasets, 
with cells colored by cell type classification. e, t-SNE plot of merged single-cell 
RNA-seq datasets, with cells colored by average expression of genes from b.  
f, Violin plot depicting the expression of rejection markers across minor cell 
types. The x axis represents different cell types, and the y axis represents the 
average expression of the rejection gene set markers from b. The width of each 
violin plot corresponds to the density of expression values for each cell type. 

g, Box plot of liquid biopsy dataset model performance measured by AUC, 
comparing the performance of organ-specific models from heart (n = 3 datasets 
from 65 biologically independent patient samples), kidney (n = 18 datasets from 
2,257 biologically independent patient samples) and liver (n = 2 datasets from 
100 biologically independent patient samples) compared to the pan-organ 
model (n = 23 datasets from 2,422 biologically independent patient samples). 
Each point is an evaluation of model performance on an independent dataset. 
Points that are joined by a line represent the same dataset. h, ROC plot of three 
models applied to AUSCAD: Pan-Organ model (trained on all peripheral blood 
datasets in PROMAD), Kidney-specific model (trained on all kidney transplant 
peripheral blood datasets in PROMAD) and Clinical model (creatinine, eGFR and 
serum albumin). Each model was evaluated using the AUC. Box plots in c and g 
show Q1, median and Q3, and the lower and upper whiskers show Q1 − 1.5× IQR 
and Q3 + 1.5× IQR, respectively. AT, alveolar type; ILC, innate lymphoid Cell; IQR, 
interquartile range; NK, natural killer; Q, quartile.
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clinical data (estimated glomerular filtration rate (eGFR), creatinine 
and serum albumin), a TOP model (trained on PROMAD data from 
kidney transplant patients) and, finally, our TOP model trained on 
all samples (Pan-Organ liquid biopsy model). We observed that our 
pan-organ model (AUC = 0.81) outperformed both gold-standard clini-
cal information (AUC = 0.58) and kidney-specific models (AUC = 0.70) 
in predicting rejection from whole blood samples (Fig. 2h). These 
results underscore the diagnostic capability of a pan-organ model, 
positioning it as a potential alternative to both traditional and 
organ-specific methodologies. However, our intention is not to pro-
vide an alternative to a biopsy but, rather, to demonstrate the benefit 
of adopting a non-invasive prediction tool that leverages information 
across organs.

Molecular characteristics of allograft fibrosis
Fibrosis is a maladaptive repair process occurring in response to tissue 
injury, characterized by excessive deposition of extracellular matrix 
that significantly challenges the long-term success of organ transplan-
tation. To investigate the molecular characteristics of pan-organ allo-
graft fibrosis and to determine whether its genomic signature differed 
from native organ fibrosis, we curated 14 datasets from liver, kidney and 
lung allografts with biopsy-proven fibrosis compared to stable graft 
function (Supplementary Table 1). We identified 57 genes that were 
differentially expressed across all organs (when using a combined P
value threshold of P < 1 × 10−7), with increases in inflammation (CASP1, 
TLR7 and TNFAIP8), cell surface markers involved in immune recogni-
tion (CD27, CD52 and CD74) and HLA (Fig. 3a). These findings support 
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Fig. 3 | PROMAD identifies a global indicator of dysfunction in allografts.
a, Heatmap of the top 50 fibrosis-specific genes, with each column representing 
a dataset and each row a gene. b, Scatter plot of association statistics between 
native and transplant organ fibrosis. The top 10 genes in each direction, 
indicating their degree of change between fibrotic and stably functioning grafts, 
are highlighted. c, Bar plot of pathways enriched for genes that are differentially 
expressed in transplant organ fibrosis but not in native organ fibrosis. Gene 
set enrichment was evaluated using a two-sided Wilcoxon rank-sum test. Each 
bar represents one Gene Ontology pathway where P values were adjusted for 

multiple comparisons using Benjamini–Hochberg correction. d,e, Pair plots of 
genes associated with DGF, acute rejection and fibrosis when compared to stable 
functioning grafts. The points in d are colored according to their appearance in 
the BHOT NanoString panel (orange), and genes in e are red if they appeared in 
the data-derived gene set. The top right panels show the correlation (Corr.) of 
association statistics for each gene. ROC curves compare BHOT (orange) and 
the data-derived panel (red) in predicting DGF (f), biopsy-proven acute rejection 
(g) and biopsy-proven fibrosis using the AUSCAD study as an external validation 
cohort (h). ROC, receiver operating characteristic.
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the notion that immune cell activity is a significant contributor to the 
development of allograft fibrosis.

It is unclear whether similar immunological activity portends 
development of fibrosis, and we investigated whether our gene set 
was predictive of fibrosis in stable allografts. Our atlas contained three 
datasets where grafts were prospectively followed for development 
of fibrosis. There was high concordance between genes that were 
predictive of fibrosis and those differentially expressed in fibrotic 
grafts (Extended Data Fig. 6), demonstrating a conserved process 
that underpins chronic allograft injury. We then explored whether this 
signature was preserved in native organs (Supplementary Table 2). 
Although the analysis demonstrated some conserved genes (Fig. 3b), 
there were significant disparities in allograft fibrosis with expression 
of immune-related pathways, including interferon signaling and T cell 
receptor activation (Fig. 3c).

We then used single-cell RNA-seq data from fibrotic kidneys within 
PROMAD and compared our pan-organ fibrosis markers (Fig. 3a) 
against the expression profiles within kidney cell types (Extended 
Data Fig. 7). T cells and macrophages demonstrated enriched expres-
sion of fibrosis-associated genes (Extended Data Fig. 7), supporting 
the hypothesis that immunological activation drives allograft fibrosis 
and representing a potential therapeutic niche.

Comprehensive pan-organ dysfunction gene set
Using PROMAD, we evaluated the performance of an established 
diagnostic tool, the BHOT panel, and compared the performance of a 
data-derived alternative. The BHOT panel is a manually curated array 
of 770 genes generated to identify allograft injury. To compare BHOT’s 
robustness in diagnosing general allograft injury, we first ranked each 
gene in order of combined change across three allograft pathologies 
in PROMAD (DGF, acute rejection and fibrosis). This analysis dem-
onstrated substantial concordance between gene expression from 
acutely rejecting and fibrotic grafts (Extended Data Fig. 8), and the 
BHOT panel was able to clearly separate these pathologies (Fig. 3d). 
However, there was limited capacity to differentiate DGF. Acknowledg-
ing this limitation, we constructed a data-derived panel that surveyed 
global allograft dysfunction. We identified a set of 500 genes that were 
overexpressed in these pathologies across all organ transplants. This 
new data-derived gene set contains 400 genes not currently used in the 
BHOT diagnostic panel (Extended Data Fig. 8) that was able to identify 
changes in all selected forms of allograft dysfunction (Fig. 3e).

Validating the data-derived gene set using the AUSCAD cohort
Using prospectively collected kidney allograft biopsy samples from 
AUSCAD, we compared our data-driven gene set from PROMAD with 
the established BHOT genes in delineating DGF, acute rejection and 
fibrosis. The data-driven gene set was able to predict DGF in this vali-
dation dataset (AUC = 0.89; Fig. 3f) compared to BHOT (AUC = 0.79; 
Fig. 3f). Furthermore, BHOT and the data-driven gene set performed 
equally well in classifying acute allograft rejection (AUC = 0.90 ver-
sus AUC = 0.93) (Fig. 3g) and fibrosis (AUC = 0.83 versus AUC = 0.81) 
(Fig. 3h).

Biomarkers of allograft tolerance and viability
Our curated atlas included eight datasets from spontaneously tolerant 
transplant recipients (five datasets from whole blood and three datasets 
from peripheral blood mononuclear cells (PBMCs)) (Supplementary 
Table 1). True biological tolerance in organ transplantation occurs 
infrequently (with the exception of liver allografts)35–38. Recognizing 
its rarity, we employed PROMAD to explore the potential benefits of 
pooling datasets from this uncommon outcome. We identified 38 genes 
that were differentially expressed across whole blood (Fig. 4a) and 45 
genes that were expressed across the remaining three PBMC datasets 
(Fig. 4b). Both gene signatures implicated suppression of the immune 
response and regulation of T cell proliferation (Fig. 4d) common to 

both kidney and liver transplant tolerance. Building on our previous 
observation that transfer learning models constructed from periph-
eral blood were capable of leveraging information across organs, we 
assessed this capacity in the context of allograft tolerance. Our findings 
revealed enhanced model performance when trained on all available 
organs compared to only the organ being predicted (Fig. 4c), again 
underscoring the benefits of a pan-organ framework in identifying 
allograft outcomes.

Predicting long-term graft outcomes from implantation data
Pre-implantation biopsies, particularly for donor kidneys, have been 
used to determine organ quality, particularly in the context of marginal 
donors. Several studies correlated baseline histological characteristics 
with post-transplant function39,40 and graft survival41,42. We constructed 
a TOP model from seven datasets comprising 279 pre-implantation 
biopsies from liver and kidney transplants (Supplementary Table 1). 
Each dataset compared pre-implantation molecular markers from 
grafts with DGF to grafts that functioned immediately. Genes most 
predictive of DGF included immune cell surface markers (CD3D, CD48, 
CD52 and CD72) (Fig. 4f). DGF can be mitigated through the use of 
machine perfusion technology that provides metabolic support for 
the allograft. We then employed the pan-organ prediction model to 
calculate the probability of an organ with a pre-implantation biopsy 
developing DGF before and after normothermic machine perfusion 
(NMP). Notably, the probability of DGF developing decreased signifi-
cantly after brief (<2 h) versus longer (>6 h) periods of NMP (Fig. 4e). 
Our model was also effective in predicting DGF or primary non-function 
in liver and kidney transplants (AUC = 0.89) (Fig. 4g).

Discussion
In this study, we provide a comprehensive integration of transcrip-
tomic data from multiple solid organ transplants, demonstrating the 
potential of a consolidated resource. By assembling an unprecedented 
150 transcriptomic datasets, encompassing more than 12,000 sam-
ples, across the four most commonly transplanted organs in humans, 
we successfully identified shared molecular signatures relevant to 
allograft rejection, fibrosis, DGF and tolerance. In addition to these 
findings, we developed a novel transfer learning framework capable 
of borrowing information across organs that provides a harmonized 
coordinated analysis. Using this framework, we demonstrate the 
potential of pan-organ molecular signatures that can subsequently 
be interrogated in pre-clinical studies and adapted for clinical use as 
biomarkers. The signatures consistently outperformed organ-specific 
models and pre-existing gene panels that are transitioning from theo-
retical to commercial use, attesting to the translational potential of a 
pan-organ paradigm. These analytical vignettes also illustrate the util-
ity of a comprehensive pan-organ atlas to validate, identify or develop 
transcriptomic signatures that align with known allograft pathologies.

Despite considerable advances in technologies that provide 
detailed molecular information, the field has failed to methodologi-
cally leverage these data in a way that improves diagnostic accuracy 
and guides clinical decision-making. Interrogation of individual organs 
analyzed by different technologies, such as NanoString, microarray or 
RNA-seq, has hindered identification of unified pathophysiological 
processes that contribute to allograft dysfunction and failure. Identi-
fication of conserved pathways that govern the interactions between 
donor parenchyma and the recipient immune response will influence 
cellular and molecular understanding, enable application to clinical 
practice and design of surrogate endpoints for clinical trials as well as 
expedite the development of therapeutic and biomarker opportunities.

A pivotal finding in our study, made possible through the interroga-
tion of PROMAD, is the identification of a common myeloid cell popula-
tion as the origin of our pan-organ molecular markers relevant to acute 
rejection. These data support previous publications in pre-clinical 
transplant models demonstrating that CD8+ effector T cell migration 
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in the context of bone-marrow-derived antigen presenting cell (APC) 
presentation of alloantigen43 is necessary for monocyte-derived APC 
maturation44 and initiation of rejection45, and myeloid cells acquiring 
immunologic memory are a barrier to transplantation success46. The 
breadth of data offered by PROMAD has allowed us to translate and vali-
date these findings to human allografts, which has been corroborated 
in previous studies demonstrating APC–T cell co-localization in kidney 
transplants47, increased prevalence of CD16+ monocyte/macrophages 
in rejecting heart transplants48,49 and resident macrophages tailor-
ing immune responses to lung allografts50. Furthermore, our liquid 
biopsy sample analysis revealed concordant transcriptomic changes 
in myeloid cells. Although the differentially expressed genes between 
blood and tissue samples were distinct, our analysis of the PROMAD 
atlas has revealed therapeutically actionable insights, emphasizing 
that targeting myeloid-specific responses presents a viable alternative 
to modulate alloimmunity51,52.

The identification of consistent molecular markers of fibrosis 
across solid organ transplants, and separation of transcriptomic 

differences between native organ and allograft fibrosis, implicate per-
sistent immune activation as a primary pathological driver of chronic 
transplant dysfunction. Inflammation, regardless of the inciting event 
(ischemia reperfusion injury, acute rejection) is a consistent feature of 
functional decline in renal11,53–55, lung56,57 and heart58 allografts. These 
findings serve as a basis for further research into molecular drivers of 
allograft fibrosis and the potential for limiting disease progression 
through targeted immunosuppression. Our study also demonstrates 
the potential of the TOP model to predict longer-term graft dysfunc-
tion from initial biopsy samples, including the role of therapeutics (for 
example, NMP) in improving graft outcomes56,57 and heart allografts58. 
These findings serve as a basis for further research into molecular driv-
ers of allograft fibrosis and the potential for limiting disease progres-
sion through targeted immunosuppression.

Our study has several limitations arising from our analysis of PRO-
MAD as a curated atlas of publicly available data. PROMAD provides 
evidence of shared molecular signatures of dysfunction across organs; 
however, these findings have not yet been explored in complementary 
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Fig. 4 | The PROMAD atlas reveals pan-organ markers for allograft tolerance.
a,b, Heatmaps of the top 20 genes implicated in allograft tolerance, with each 
column representing a dataset and each row a gene. a corresponds to datasets 
that sampled PBMCs, and b corresponds to whole blood datasets. c, Box plot of 
model performance measured by AUC, comparing the performance of organ-
specific kidney (n = 2 datasets from 68 biologically independent patient samples) 
and liver (n = 3 datasets from 52 biologically independent patient samples) 
models compared to the pan-organ model (n = 5 datasets from 120 biologically 
independent liver and kidney patient samples). Each point is evaluation of 
model performance on an independent dataset. Points that are joined by a 
line represent the same dataset. d, Bar plot of pathways that are enriched for 
genes differentially expressed in whole blood from tolerant recipients. Gene 
set enrichment was evaluated using a two-sided Wilcoxon rank-sum test. Each 
bar represents one Gene Ontology pathway where P values were adjusted for 
multiple comparisons using Benjamini–Hochberg correction. e, Box plot of 
predicted early allograft dysfunction risk on a logit scale. Each dataset contained 

biopsy samples before and after NMP. A two-sided t-test was used to determined 
significance levels between the groups (***P < 0.001, **P < 0.01 and *P < 0.05). 
Datasets had a varying number of biologically independent samples before and 
after NMP, respectively (n = 10, 10, P = 0.006; n = 6, 6, P = 0.041; n = 5, 10, P = 0.114; 
n = 6, 6, P = 0.157; n = 6, 6, P = 0.008; n = 5, 6, P = 0.793). f, Network plot of model 
coefficients for predicting DGF. Each line joins the two genes into a ratio, where 
the weight of the line corresponds to the magnitude of the model coefficients. 
Lines in red and blue are positive and negative coefficients, respectively. g, Box 
plot of model performance (AUC) from pre-transplant biopsies in predicting 
DGF (n = 7 datasets from 279 biologically independent patient samples), acute 
rejection (n = 3 datasets from 195 biologically independent patient samples) and 
fibrosis (n = 2 datasets from 124 biologically independent patient samples). Box 
plots from c, e and g show Q1, median and Q3, and the lower and upper whiskers 
show Q1 − 1.5× IQR and Q3 + 1.5× IQR, respectively. IQR, interquartile range; 
PreTx, pretransplantation; Q, quartile.
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experimental work. Although we established the effectiveness of 
pan-organ signatures to predict multiple allograft pathologies using 
a leave-one-dataset-out cross-validation (LOOCV) strategy, and further 
validation using AUSCAD, confirmation of our findings in prospectively 
recruited cohorts across other transplanted organs would increase con-
fidence in their reliability. Moreover, the lack of detailed phenotypic 
data made publicly available, such as specific immunosuppression 
regimens or comprehensive donor histories, limits our ability to fully 
account for these variables in the current study. Another limitation is 
the detail of sample annotations within PROMAD, which is restricted to 
what has been publicly shared, which is particularly relevant to a diag-
nosis of rejection. However, we anticipate that the sample annotations 
made available will enable researchers to further explore the molecular 
understanding of different rejection phenotypes, which have distinct 
clinical implications59,60.

Variations in pathology classification have led to misinterpretation 
of biomarker performance on isolated external validation datasets24,26, 
a common issue faced by the transplant research community. To tackle 
this challenge, we developed an interactive web platform for PROMAD 
that enables users to assess the performance of proposed models 
across a comprehensively curated dataset before they progress evalu-
ation in prospectively recruited cohorts. Our atlas provides a resource 
that can standardize the performance evaluation of diagnostic tools for 
allograft dysfunction. Finally, regardless of re-processing of all datasets 
through standardized pipelines, we have not performed cross-dataset 
normalization, instead opting for transfer learning approaches to 
analyze across datasets. A fully curated PROMAD atlas now provides 
additional opportunities to perform more sophisticated normaliza-
tions or project datasets onto common embeddings that may uncover 
more complex transcriptomic associations.

PROMAD provides a valuable resource for the transplant research 
community, compiling 150 datasets and 12,765 sequencing samples 
across the four most commonly transplanted organs, and the capacity 
to explore the landscape of allograft dysfunction. This study advances 
understanding of allograft dysfunction by demonstrating conserved 
molecular signatures across organs. PROMAD provides a resource for 
robust validation of prospective biomarkers as well as development 
of more effective diagnostic tools, risk stratification parameters and 
therapeutic targets.
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use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.
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Methods
Our research complied with all relevant ethics regulations. The AUSCAD 
research protocol subject to ethics approval was approved by the West-
ern Sydney Local Health District Human Research Ethics Committee 
(HREC/12/WMEAD/190).

Data curation and creation of the PROMAD
A search to identify publicly available gene expression data in the Gene 
Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/) and 
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) was performed 
using the following terms: ‘kidney transplant’, ‘liver transplant’, ‘lung 
transplant’, ‘heart transplant’ and ‘allograft’. Microarray, RNA-seq 
and single-cell RNA-seq technologies were included, revealing a total 
of 231 datasets published before September 2022. These datasets, 
all derived from human studies, were filtered based on sample size, 
quality and availability of clinical metadata. Detailed inclusion and 
exclusion criteria can be found in Extended Data Fig. 1. Upon evaluation,  
150 datasets met the criteria and were incorporated into the PROMAD 
atlas (Supplementary Table 1).

Statistics and reproducibility
Analyzing microarray datasets. We obtained the intensity-level data 
for each included dataset from the GEO or ArrayExpress. A log2 trans-
formation was used to scale the data, and quantile normalization was 
used to normalize sample-specific technical artifacts. Differential 
gene expression within each dataset was quantified. Moderated test 
statistics were calculated using the eBayes function from the limma 
package61. The Benjamini–Hochberg procedure was used to control 
for the false discovery rate at a 5% level.

Analysing RNA-seq datasets. Unnormalized count datasets were 
obtained from the GEO or ArrayExpress. Genes with no expression 
in any sample were filtered from the dataset. The trimmed mean of 
m-values (TMM)62 was used to normalize library sizes of each sample. 
Within each dataset, differential gene expression analysis was per-
formed using limma-voom63 to calculate moderated test statistics for 
each gene within each dataset. The Benjamini–Hochberg procedure 
was used to control for the false discovery rate at a 5% level.

Analyzing single-cell RNA-seq datasets. Unnormalized count data 
were obtained from the GEO or ArrayExpress and were scaled using 
a log transformation. Cells with no expression across all genes were 
filtered, and the remaining cells were annotated using Seurat. In brief, 
Seurat uses the Azimuth database to annotate each dataset with cell 
types using a dataset appropriate to the organ of interest64. For cells 
annotated as a T cell, we performed subannotation to distinguish CD4+ 
and CD8+ T cells. In brief, we subsetted the integrated atlas for only 
T cells. Using the top 2,000 variable features, we performed principal 
component analysis (PCA) reduction and Louvain clustering (resolu-
tion 0.05) on the k-nearest neighbor graphs (k = 20) generated from the 
first five principal components (PCs). On the basis of the expression 
of markers, the Louvain clusters were then classified into either CD4 
or CD8 T cells.

Merging single-cell RNA-seq datasets. To embed the single-cell 
transcriptomes into a shared latent space, for each batch the count 
matrix was first normalized by the total number of reads and then 
multiplied by a 10,000scaling factor. The top 2,000 features were 
prioritized by their variance across all the single-cell RNA-seq batches. 
The cell pairwise anchor correspondences between different single-cell 
transcriptome batches were identified with 30-dimensional spaces 
from reciprocal PCA65. Using these anchors, the single-cell RNA-seq 
datasets were integrated and transformed into a shared space. Gene 
expression values were scaled for each gene across all integrated cells 
and used for PCA. For the integration of the organ datasets, k.anchor, 

k.filter and k.weight were set to 5, 200 and 100, respectively. After 
merging all datasets, we performed a t-distributed stochastic neighbor 
embedding (t-SNE) dimension reduction.

Identifying common differentially expressed genes in datasets. To 
combine the moderated test statistics of each gene, across all datasets, 
we used the directPA package28. In brief, a normal transformation was 
applied to the test statistics for each dataset, converting limma test 
statistics to normal z-scores. Stouffer’s method was used to combine 
the z-scores across all datasets for each gene.

Calculating expected intersection of differentially expressed 
genes. To calculate the expected number of overlapping differentially 
expressed genes, we first calculated the marginal probabilities of a 
gene being differentially expressed in each organ. The product of these 
marginal probabilities was then used to determine the expected num-
ber of genes that should be common among organs, by chance alone. 
A chi-squared test was used to determine if the number of observed 
overlapping genes was different than what was observed.

Pathway analysis. In the process of aggregating a set of genes across 
datasets (whether common or unique), the directPA pipeline returned 
a combined z-score for each gene. This combined statistic was a direc-
tional representation of change between allograft dysfunction and 
stably functioning grafts across datasets. To identify sets of genes 
that were changing, Wilcoxon rank-sum tests were performed on the 
combined P values that were determined for each gene within our gene 
set analysis, returning a significance value for KEGG66 and Reactome67 
pathways that were enriched in the dysfunction of interest. Where we 
wanted to infer a directional change, a gene set enrichment analysis 
(GSEA) was performed on those ranked lists of genes, using the clus-
terProfiler package in R as well as the KEGG and Reactome databases.

Determining cell-type-specific gene set. To establish which cell type 
expressed genes found in our meta-analysis, we made use of the Cepo 
package, which identifies cell identity genes for cell types68. Treating 
each sample as a distinct dataset, genes were ranked based on their 
relative importance to a particular cell type using Cepo statistics. 
These statistics were then clustered using the Pearson correlation 
coefficient to evaluate the specificity of the cell type signal within the 
allograft. Subsequently, using the Cepo statistics, we used a Wilcoxon 
rank-sum test to compute the enrichment of the genes identified in 
our meta-analysis across different cell types. We compared the results 
across sample conditions, namely acute rejection and stably function-
ing grafts.

TOP framework
To address the challenge of building a robust and predictive model 
across different datasets and platforms, we developed the TOP frame-
work. TOP is a modeling approach that constructs reference-free bio-
markers, which are required to yield consistent predictions across 
data from different platforms in the absence of internal normalization 
standards30–32. An extension of our previous model, CPOP26, this trans-
fer learning framework is designed to construct prediction models that 
(1) are self-normalizing and so can be applied across platforms without 
relying on traditional batch correction methods and (2) ensure that all 
organs contribute equally to the model construction. This predictive 
framework is available on the Bioconductor Project: https://bioconduc-
tor.org/packages/release/bioc/html/TOP.html.

In brief, the TOP framework starts by defining a set of features that 
consistently change across all the datasets used to train the model. The 
top 50 genes that are most differentially expressed are selected for 
subsequent analysis and used to create a log-ratio matrix (Supplemen-
tary Methods). To identify important features for the model, the fold 
change for each ratio in relation to a binary outcome was calculated in 



Nature Medicine

Article https://doi.org/10.1038/s41591-024-03030-6

all the individual datasets used for training. The fold changes were then 
combined using a weighted mean scaled by their variance, to ensure 
that selected features were changing in all organs (Supplementary 
Methods). The scores were then used to weight features in a lasso 
regression model. The lasso was chosen for its ability to shrink coef-
ficients to zero, producing sparse models.

Motivation for TOP framework. With the goal of creating a pan-organ 
model from a diverse range of publicly available datasets, we devel-
oped a method of modeling omics data across organs. Traditional 
approaches to build models across datasets fall under the umbrella of 
batch correction. However, within our training datasets, both batch and 
organ are perfectly confounded. Hence, traditional batch correction 
methods would not be applicable.

Our objective was to create a comprehensive pan-organ model 
capable of classifying allograft rejection instances across all trans-
planted organs. Considering that our data collection encompassed 
heart, lung, liver and kidney transplant recipients, it was crucial for 
the model to achieve equilibrium among all organs to be considered 
genuinely pan-organ. Consequently, we designed the TOP framework. 
This framework seeks to accomplish three primary goals:

1.     Maintain balance among all organs in the framework, prevent-
ing overemphasis on the more abundant kidney transplant 
datasets while disregarding smaller ones.

2.    Assign equal weight to each study in our atlas, avoiding dis-
proportionate learning from datasets with particularly large 
sample sizes.

3.    Yield transparent and interpretable coefficients, thereby fa-
cilitating a smooth transition to the identification of potential 
biomarkers.

TOP methodology. Suppose we want to fit a model across datasets, 
then , where . First, we define a set of  
features  to be the intersection of features in . Then, we can  
redefine  as . Let a vector  represent a patient’s clinical 
outcome (for example, biopsy-proven rejection). We, therefore, can 
define a moderated test statistic for each feature within  using the 
limma package. The moderated test statistic is assumed to follow a 
Gaussian distribution and so is converted to a z-score and subsequent 
P value28,29. Stouffer’s method of combining P values is then used to 
determine features that are important across all datasets. These fea-
tures are ranked according to combined P value, and, by default, the 
top 50 are included for subsequent analysis. Consequently, we subset 

 once more, incorporating only the top 50 features in each dataset, 
resulting in an updated matrix .

Creating the log-ratio matrix. The ‘log-ratio matrix’ was first proposed 
by Wang et al.26. In brief, a matrix  of dimension  where and  
each column of  represents the pairwise difference between two 
log-transformed columns in . Specifically, each column 
of  consists of all log-ratio features for , signifying that 
each column in the  matrix is the log-ratio of the expression values of 
two features. For the given log-ratio matrix , we denote each 
row of the matrix as  for sample .

Following the methodology outlined above, we proceed to calcu-
late the log fold change for each feature in relation to the binary out-
come  within each  matrix. Keep in mind that there may be up 
to  matrices, with k signifying the total number of datasets. For every 
matrix , where , we determine the log fold change by con-
trasting the expression values of each feature between the two groups 
delineated by the binary outcome .

Calculating feature weights. To address the concern that larger data-
sets might overpower the signal from smaller datasets, we can calculate 
weights for each dataset  based on their respective sample 

sizes. This approach ensures that datasets with a larger number of 
samples do not disproportionately influence the overall analysis. To 
calculate the weighted mean ( ) of the log fold changes, we first assign 
a weight ( ) to each dataset, corresponding to the inverse of its sample 
size. The weighted mean ( ) for each dataset i is then computed as 
follows:

where  denotes the log fold change for dataset i, and  represents the 
total number of datasets.

Similarly, to determine the weighted variance ( ), we use the 
formula:

By employing these weighted calculations, we ensure that the 
analysis accommodates the varying sizes and characteristics of the 
datasets from different organ transplant cohorts, ultimately providing 
a more robust and reliable assessment of the log fold changes across 
all datasets.

Next, we compute a test statistic for each ratio, which is obtained 
by dividing its mean change by its variance. Additionally, to ensure 
stability and mitigate the impact of extreme values, we introduce a 
fudge factor in the denominator. We denote it as , where  
denotes the 90th quantile function applied to the weighted variances 
( ). Consequently, the test statistic  for each ratio  can be calculated 
using the following formula:

where  represents the weighted mean of the log fold change for ratio 
.  denotes the corresponding weighted variance,  

and  signifies the total number of ratios.
By incorporating the fudge factor, we account for potential outli-

ers and ensure that the test statistic remains robust in the presence of 
features with small variances across datasets. This approach enhances 
the reliability of the analysis, contributing to a more accurate assess-
ment of the relationships between features and clinical outcomes.

Finally, to smooth the effects of weighting features, we take the 
square root of each test statistic , giving us a transformed weight of 
each feature .

Calculating organ (sample) weights. To account for the balance 
among the four organ transplants discussed earlier, we proceed to 
compute a weight for each observation. We can define the weight ( ) 
for each organ  as proportional to the inverse of its number of 

datasets ( ):  for . This weighting strategy, com-

bined with additional smoothing, ensures that no single organ 
transplant type disproportionately influences the results while 
accounting for the inherent right skew in our training set.

Building the lasso model. Both the feature and sample size weights 
are incorporated into a weighted lasso regression model. The lasso was 
chosen for the ability to force features out of the model, providing 
concise estimates of feature importance. The lasso is built by first 
concatenating the log-ratio matrices  for .



Nature Medicine

Article https://doi.org/10.1038/s41591-024-03030-6

Building the pan-organ transfer learning model. To create a robust 
pan-organ model capable of accurately classifying instances of allograft 
rejection across all transplanted organs, we amalgamated rejection 
phenotypes across organs. This addressed the challenges posed by 
the lack of uniform definitions of organs and the evolution of his-
topathological guidelines over time. Specifically, we consolidated 
T-cell-mediated rejection (TCMR), antibody-mediated rejection 
(ABMR) and mixed phenotypes under one comprehensive definition 
of rejection. With this composite outcome, a transfer learning model 
was constructed using the TOP framework. This model was trained 
using datasets from kidney, lung, liver and heart transplantation. The 
TOP framework was used to balance feature selection and sample 
weighting to ensure that each organ was contributing equally to the 
model, despite disparities in dataset sizes.

Transfer learning model evaluation. Both the pan-organ and organ- 
specific models were evaluated using an LOOCV strategy, whereby 
models were systemically trained on all available datasets, excluding 
a testing dataset. AUC was used to quantify model performance.

AUSCAD
Study overview. The AUSCAD is a single-center, prospectively 
recruited observational cohort study at Westmead Hospital in Aus-
tralia. Consent was obtained before transplantation with procedures 
approved by the Western Sydney Local Health District Human Research 
Ethics Committee (HREC/12/WMEAD/190). Demographic and clinical 
data, as well as blood and kidney biopsies, were collected at implanta-
tion and at 3 months after transplantation. No statistical methods were 
used to pre-determine sample sizes, but our sample sizes are similar 
to those reported in previous publications available in our PROMAD 
atlas (Supplementary Table 1).

Sample collection and histopathological evaluation. Two biopsy 
cores were taken at each protocol or for-cause biopsy, with one used 
for histology and the other for bulk RNA-seq (described below). Biopsy 
cores reserved for histology underwent hematoxylin and eosin, peri-
odic acid–Schiff, Masson’s trichrome and C4d staining at the Institute of 
Clinical Pathology and Medical Research (Westmead Hospital) before 
evaluation by a single histopathologist, using the Banff 2019 schema69.

RNA isolation and sequencing. Kidney biopsy specimens were left 
in RNAlater (Sigma-Aldrich) overnight at 4 °C before removal and 
storage at −80 °C until RNA extraction. Specimens were chemically 
and physically lysed by using 2-mercaptoethanol (Sigma-Aldrich) 
and TissueLyser II (Qiagen), followed by RNA extraction using AllPrep 
DNA/RNA/microRNA and MiniElute clean-up kits (Qiagen). Peripheral 
blood was collected into PAXgene Blood RNA tubes (Qiagen), left at 
room temperature for 5 h and stored at −80 °C until RNA extraction. 
RNA was extracted by using a PAXgene Blood miRNA Kit (Qiagen). All 
RNA samples were frozen and stored at −80 °C and then sent in bulk 
to the Australian Genome Research Facility. Sample quality control 
and library preparation were performed in-house, and the resultant 
libraries were sequenced using the NovaSeq 6000 platform (Illumina) 
with 100-bp, paired-end read length.

Downstream analysis and normalization. Raw FASTQ files were first 
trimmed and aligned using the GRCh37-hg19 reference genome. The 
resulting data were then organized into a gene counts matrix for each 
sample. The bulk RNA-seq data underwent initial filtering to remove 
reads too low for further analysis70. This was followed by normalization 
using the TMM method25.

External validation
Liquid biopsy validation. We evaluated our pan-organ liquid biopsy 
model on prospectively collected blood samples. Outcomes associated 

with each blood sample were assessed using corresponding biopsy 
scores. The AUSCAD validation set also used a composite definition 
of rejection (using Banff 2019 criteria69).

Data-derived gene set validation. To evaluate the clinical relevance of 
our data-derived gene set for global allograft dysfunction and the BHOT 
panel, we conducted a validation study using the AUSCAD cohort. We 
constructed three pan-organ models using our TOP method to predict 
DGF (defined as requiring dialysis within 1 week of transplantation), 
allograft rejection (a composite value as described above) and fibro-
sis, based on biopsy data from 7, 54 and 14 PROMAD atlas datasets, 
respectively. Instead of performing feature selection, we incorporated 
features from our data-derived gene set (n = 500) or the BHOT panel 
(n = 770) in model development. Our DGF model was assessed in 136 
AUSCAD pre-implantation biopsies. For allograft rejection, 121 biopsies 
taken 3 months after transplantation were analyzed. The fibrosis model 
was tested on 86 biopsies with interstitial fibrosis and tubular atrophy 
(IFTA) scores over 10% and no concurrent rejection, as determined by 
a single pathologist. AUC was used as an evaluation metric to compare 
model performance.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this manuscript are publicly available on the Gene 
Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/) and Array-
Express (https://www.ebi.ac.uk/arrayexpress/). The accession codes for 
each individual study are supplied in Supplementary Table 1. Further-
more, all processed data used in this study are available for download 
at https://shiny.maths.usyd.edu.au/PROMAD/.

AUSCAD RNA-seq data, derived from peripheral blood samples col-
lected 3 months after transplant, are publicly accessible in the Gene 
Expression Omnibus database (accession code GSE248752). RNA-seq 
data from biopsy samples taken before graft re-perfusion are available 
under accession code GSE261240, and those from biopsy samples 
obtained 3 months after transplant can be found under GSE261892.

Code availability
The code used to analyze all datasets presented in this manuscript and 
in the figures is available on GitHub (https://github.com/Harry25R/
POAD_Figures).
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Extended Data Fig. 1 | Schematic of the literature review workflow for 
transplant omics datasets. A systematic search of the GEO and ArrayExpress 
databases using terms related to heart, lung, liver, and kidney transplants, 
yielded 13,419 datasets. Datasets underwent scrutiny for inclusion, excluding 
non-human or those lacking proper controls, defined as stable functioning 

grafts. Data were then extracted and normalized using various methods 
appropriate to the data type. The PROMAD repository was created, comprising 
168 processed datasets available for research access, with 150 transcriptomic 
datasets selected for our study. Non-coding region datasets, while excluded from 
this study, were also included in PROMAD.
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Extended Data Fig. 2 | Clustering of CEPO statistics. Correlation heatmap of cell-identity gene statistics generated from Cepo (Kim et al., 2021) for each cell type 
across tissues and datasets in the pan-organ allograft rejection atlas. The heatmap is hierarchically clustered by the similarity of correlation profiles. Colour bars 
denote tissue origin or cell type of each sample.



Nature Medicine

Article https://doi.org/10.1038/s41591-024-03030-6

Extended Data Fig. 3 | Liquid biopsy model from whole blood and PBMC in 
acute allograft rejection. A. Heatmap of top 50 genes differentially expressed in 
across all PBMC datasets. Each cell is coloured by normal score in each dataset.  

B. Heatmap of top 50 genes differentially expressed across all whole blood 
datasets. Each cell is coloured by normal score in each dataset. C. Scatter plot of 
combined association statistics for allograft rejection in whole blood and PBMC.
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Extended Data Fig. 4 | Training a liquid biopsy model using PROMAD. 
A. Boxplot of increasing number of ratios that are required to predict acute 
allograft rejection from liquid biopsy samples. Each point is an evaluation of 
model performance on an independent dataset. Points that are joined by a line 
represent the same dataset. Box plots show Q1, median and Q3, and the lower and 
upper whiskers show Q1 – 1.5 × IQR and Q3 + 1.5 × IQR, respectively. B. Bar plot of 
model coefficients for our liquid biopsy model. C. Dot plot of liquid biopsy model 
performance on the AUSCAD cohort with a loess smoothed curve representing 
the mean trend as the number of training datasets increases. The shaded area 
around the curve indicates the 95% confidence interval, reflecting the variability 
around the estimated mean trend. D. A pair of ROC curves comparing model 
performance on the AUSCAD cohort. Both models are trained across multiple 
organs, however their integration algorithms differ. TOP is coloured yellow, and 
ComBat is coloured blue. E. A boxplot of model performance across peripheral 

blood datasets within PROMAD (n = 23 datasets from 2422 biologically 
independent patient samples), when tissue weighting is applied to the TOP 
algorithm. Each point is an evaluation of model performance on an independent 
dataset. Box plots show Q1, median and Q3, and the lower and upper whiskers 
show Q1 – 1.5 × IQR and Q3 + 1.5 × IQR, respectively. A 3-way ANOVA using organ, 
dataset and weighting strategy was performed to assess if weighting strategy 
impacted AUC. F. Boxplot comparison of model performance across all datasets 
within PROMAD. We compare three integration algorithms (Combat, Quantile 
normalization and TOP). We split the model performance by technology to 
demonstrate TOP’s ability to cross technologies more easily. Box plots show Q1, 
median and Q3, and the lower and upper whiskers show Q1 – 1.5 × IQR and Q3 + 1.5 
× IQR, respectively. A 2-way repeated measures anova was performed to test the 
impact of integration strategy on AUC.
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Extended Data Fig. 5 | Workflow of the Transferable Omics Prediction (TOP) framework utilised to build a regression model across multiple datasets.
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Extended Data Fig. 6 | Concordance between expression profiles of biopsies 
that are fibrotic, compared with grafts that will become fibrotic. A. Scatter 
plot of association statistics between grafts that are fibrotic and grafts that will 
become fibrotic. Each point is a gene, where the R2 = 0.21, p < 0.0001. B. Scatter 
plot of association statistics between grafts that are fibrotic and grafts that will 
become fibrotic. A hypothesis test is performed in all 8 directions, and the top 
10 genes in each direction are coloured. C. Dot plot of a two-sided Wilcoxon-
rank sum test for pathways associated with biopsy proven fibrosis compared 

to stable functioning grafts. Each dot represents one reactome pathway where 
p-values were adjusted for multiple comparisons using the benjamini-hochberg 
correction. D. Dot plot of a two-sided Wilcoxon-rank sum test for pathways 
associated with stable functioning biopsies that became fibrotic compared with 
biopsies that remained stable. Each dot represents one reactome pathway where 
p-values were adjusted for multiple comparisons using the benjamini-hochberg 
correction.



Nature Medicine

Article https://doi.org/10.1038/s41591-024-03030-6

Extended Data Fig. 7 | Pan-Organ fibrosis gene set at single cell resolution. 
A. ROC plot predicting biopsy proven fibrosis (IFTA > 10%) in protocol biopsies 
from the AUSCAD cohort. Yellow = model trained on transplant fibrosis dataset 
(n = 14) from the PROMAD atlas. Blue = model trained on transplant fibrosis 

dataset (n = 3) from the PROMAD atlas. B. Heatmap of fibrosis related gene (from 
Fig. 3A) expression in minor cell types of the pan-organ allograft dysfunction 
atlas C. tSNE projection of the cells of the pan-organ allograft dysfunction atlas. 
Single cells are coloured by minor cell types, as defined by our PROMAD atlas.
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Extended Data Fig. 8 | Quantitative analysis reveals a set of genes associated 
with Global Indicators of Dysfunction in Allografts. A. Density plot of 
association statistics for global allograft dysfunction, and genes within the Banff 
Human Organ Transplant (BHOT) Nanostring panel are coloured in orange.  
B. Density plot of association statistics for global allograft dysfunction, and 
genes within the data-driven gene set panel are coloured in red. C. A 3D scatter 

plot of association statistics for delayed graft function (DGF), allograft rejection 
and fibrosis. Each point is a gene, coloured by p-value for its significance to be 
upregulated in each condition. D. Dot plot of a two-sided Wilcoxon-rank sum test 
for our data-driven gene set using the reactome database. Each dot represents 
one reactome pathway where p-values were adjusted for multiple comparisons 
using the benjamini-hochberg correction.








